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Abstract

An alternative method to the Particle Strength Exchange method for solving the advection–diffusion equation in the

general case of a non-isotropic and non-uniform diffusion is proposed. This method is an extension of the diffusion

velocity method. It is shown that this extension is quite straightforward due to the explicit use of the diffusion flux in the

expression of the diffusion velocity. This approach is used to simulate pollutant transport in groundwater and the

results are compared to those of the PSE method presented in an earlier study by Zimmermann et al.

� 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

In a recent paper, Zimmermann et al. [18] have explored the application of the PSE method to non-

isotropic non-uniform diffusion. Although this extension of the method was derived more than ten years

ago by Degond and Mas-Gallic [7], this is one of the very first attempt to use it in order to solve a physical

problem, here the dispersion in groundwater flows. The work by Zimmermann et al. involves a re-griding

technique previously developed by Koumoutsakos and Cottet which is fully described as well as many other

interesting aspects of particle method in [6]. An alternative method for the simulation of diffusion process

has been developed in the last decade, specially for external flows. It is based on the diffusion velocity

concept and includes a few interesting characteristics [8,10]. Particularly, the extension of this method to
non-isotropic non-uniform diffusion problems is quite straightforward which was not the case for any other

existing particle methods. This is due to the fact that the diffusion flux rather than the diffusion operator is

considered in these methods. In this paper, we take the opportunity offered by Zimmermann et al. work to

test the method and to compare its behavior to that of the PSE method. The same test problems have been
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used and the numerical tests have been performed with and without re-griding in order to derive an estimate

of the limitation of the self-adaptivity to the method. We believe that the velocity diffusion method offers a

valuable alternative at least for the particular case of dispersion problem in aquifer which was addressed in

the last part of Zimmermann et al. paper.

2. Numerical model

2.1. Particle approximation of the advection–dispersion equation

The advection–dispersion equation can be written as follows:

ocðx; tÞ
ot

þ uðx; tÞ � rcðx; tÞ ¼ rðDðx; tÞ � rcðx; tÞÞ; ð1Þ

where uðx; tÞ is the mean velocity field, cðx; tÞ is the contaminant concentration and D is the dynamic

dispersion tensor. In this paper, we consider that the contaminant is a conservative solute. There is no mass

transfer to other species or chemical reaction. Only the advection and dispersion have been simulated. As

usual in particle methods, the contaminant concentration field is discretized in a set of particles Pi. Each
particle Pi is defined by its location xiðtÞ and its weight ciðtÞ. The contaminant concentration can be ap-

proximated by:

chðx; tÞ ¼
X
i

ciðtÞfeðx� xiðtÞÞ; ð2Þ

where chðx; tÞ is the approximated concentration and fe is the usual smoothing function. This function is

defined by feðxÞ ¼ ð1=enÞfðx=eÞ, where n is the space dimension and e is the smoothing parameter [6]. This

smoothing function satisfies the following moment conditions:Z
R2

feðxÞdxdy ¼ 1 and

Z
R2

xfeðxÞdxdy ¼ 0: ð3Þ

There are three main classes of algorithms to account for the dispersion term in the advection–dispersion

equation. The first class is the random walk technique introduced by Chorin [4,5]. It is based on the analogy

between a standard brownian motion and a diffusion process. The second class of methods is the integral

approximation of the diffusion operator of the advection–diffusion equation [3,7,9]. This is the method

which has been used in Zimmermann et al. work. The third class of methods uses the notion of diffusion
velocity. In this third class, the diffusion term is interpreted as the displacement of particles in a direction

which is aligned with the local concentration gradient. This displacement results from a diffusion velocity

which is added to the advection velocity [8,17]. The existence of the solution of the modified equation as

well as the convergence of the particle method for simple cases has been proved by Lions et al. [13,15,16].

This model holds for the advection–dispersion equation too since the dispersion process is usually mode-

lised by means of a diffusion term. The resulting equation reads:

ocðx; tÞ
ot

þr � ½ðuðx; tÞ þ udðx; tÞÞ � cðx; tÞ	 ¼ 0; ð4Þ

where uðx; tÞ is the mean velocity field and udðx; tÞ is the dispersion velocity. The dispersion velocity is
readily obtained by identifying this equation with the original advection–dispersion equation:

udðx; tÞ ¼ �Dðx; tÞrcðx; tÞ
cðx; tÞ ¼ �Dðx; tÞr log cðx; tÞ: ð5Þ
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To solve the new advection–dispersion equation, it has to be written in a Lagrangian framework yielding

the discrete form:

dxi

dt
¼ uðxi; tÞ þ udðxi; tÞ; ð6Þ

dci
dt

¼ 0: ð7Þ

This set of differential equations has been numerically solved by using a 4th order accurate Runge–Kutta

scheme. It can be pointed out that the method is conservative in the sense that the sum ð
P

i ciÞ is constant

from Eq. (7). In the present work, a second-order, two dimensional Gaussian smoothing function has been

selected:

feðxÞ ¼
1

pe2
exp

 
� jxj2

e2

!
: ð8Þ

The diffusion velocity has to be computed through the following approximation:

udðx; tÞ � �Dðx; tÞrchðx; tÞ
chðx; tÞ

: ð9Þ

rchðx; tÞ is obtained by a direct differentiation of Eq. (2) as in [8,17]. Note that the dispersivity Dðx; tÞ is a

spherical tensor in the isotropic case and a second rank symmetric tensor in the two dimensional aniso-

tropic case. In the rest of the paper, the Scheidegger�s model [2] has been chosen:

D ¼ Dxx Dxy

Dyx Dyy

� �
; ð10Þ

where

Dxx ¼ aL

u2
x

juj þ aT

u2
y

juj ; ð11Þ

Dyy ¼ aT

u2
x

juj þ aL

u2
y

juj ; ð12Þ

Dxy ¼ Dyx ¼ ðaL � aTÞ
uxuy
juj ; ð13Þ

juj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2
x þ u2

y

q
; ð14Þ

aL is the longitudinal dispersivity, aT the transversal dispersivity, ux the component of the mean velocity

field in the x direction and uy the component in the y direction.

2.2. Re-griding procedure

The particles must overlap at any time to ensure the accuracy of the numerical solution. In order to
explain the basis of this overlapping condition, it is important to keep in mind that the solution has been
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approximated as a sum of individual functions which are the product of the particle weight and the

smoothing function. Once the cut-off parameter has been selected, these function shapes are frozen so that

it is easily understood that a coarse particle repartition will yield a shaky approximation. To overcome this

problem, a re-griding procedure has to be used. This process is described in the present section and was

previously applied with in the particle in cell framework [14]. The re-griding consists in two steps. The first

step is a projection step. At time t0, the old particles P0
i are located at x0

i and their weights are c0i . A regular

square grid is superimposed to the domain covered by the particles. The location of new particles P1
i is set

on the grid node. The grid path h is the same for all directions and has been selected in order to satisfy the
overlapping condition. Using the new particles, the contaminant concentration at location x1

i can be cal-

culated as:

c0hðx1
i Þ ¼

XN0
p

j¼1

c0j feðx1
i � x0

j Þ; ð15Þ

where N 0
p is the old particles number. To evaluate the weight c1i for each new particle P1

i , the following

approximation can be used:

c1i ¼
Z
P1

i

c0hðx1
i Þdxdy � h2c0hðx1

i Þ: ð16Þ

However this first step, which is something like a double projection step, introduces diffusion errors which

have to be corrected. This is the goal of the second step. Two different evaluations for the projection error
can be derived:

Er1 ¼
XN1

p

j¼1

c1j feðx0
i







 � x1
j Þ � c0hðx0

i Þ








2

L2ðR2Þ

; ð17Þ

Er2 ¼
XN1

p

j¼1

c1j feðx1
i







 � x1
j Þ � c0hðx1

i Þ








2

L2ðR2Þ

; ð18Þ

where N 1
p is the new particles number. The correction procedure has been derived as a correction to be

added to the weights c1i of new particles P1
i . This correction has been computed by assuming that a good

estimate for the error is provided by the product of the Laplacian of the approximated concentration c0hðx1
i Þ

and a constant K. This assumption has been used to compute the correction itself. It is actually an anti-

diffusion process defined as:

c1ci ¼ c1i � Kh2Dc0hðx1
i Þ; ð19Þ

where c1ci is the corrected value for c1i . To simplify the procedure, a uniform value has been retained for K.

This value has been selected in order to minimize a combination of the two previously defined errors:

Er1 þ Er2 ¼
XN1

p

j

ðc1j







 � Kh2Dc0hðx1
j ÞÞfeðx0

i � x1
j Þ � c0hðx0

i Þ








2

þ
XN1

p

j

ðc1j







 � Kh2Dc0hðx1
j ÞÞfeðx1

i � x1
j Þ � c0hðx1

i Þ








2

; ð20Þ
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this expression is a quadratic form aK2 þ bK þ c which is minimum for:

K ¼ � b
2a

; ð21Þ

where

b ¼ 2
XN0

p

j

c0hðx0
j Þ

0
@

0
@ �

XN1
p

i

c1i feðx0
j � x1

i Þ

1
AXN1

p

i

Dc0hðx1
i Þh2feðx0

j � x1
i Þ

þ
XN1

p

j

c0hðx1
j Þ

0
@ �

XN1
p

i

c1i feðx1
j � x1

i Þ

1
AXN1

p

i

Dc0hðx1
i Þh2feðx1

j � x1
i Þ

1
A; ð22Þ

a ¼
XN0

p

j

XN1
p

i

h2Dc0hðx1
i Þfeðx0

j

0
@ � x1

i Þ

1
A

2

þ
XN1

p

j

XN1
p

i

h2Dc0hðx1
i Þfeðx1

j

0
@ � x1

i Þ

1
A
1
A

2

; ð23Þ

A simple second order centered finite difference scheme has been used to estimate Dc0hðx1
i Þ.

3. Numerical tests

3.1. Test case definition

In this section, the diffusion velocity method will be tested by comparing the numerical results obtained

with this method with Zimmermann et al. [18] numerical results. Therefore the same problems have been

considered and the results are presented in the same dimensional form. The contaminant was assumed to be

injected at a point source in an unbounded domain where the mean velocity field has been taken uniform
and constant. The source of the contaminant was located at point xð�100; 100Þ. For this simple problem,

an analytical solution for the concentration ca can be derived:

caðx; tÞ ¼
dM

2pmne

expðAÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4t2ðDxxDyy � D2

xyÞ þ e4src þ 2e2srctðDxx þ DyyÞ
q ; ð24Þ

where

A ¼ �x2t ð2tDyy þ e2srcÞ � y2t ð2tDxx þ e2srcÞ þ xtyt4tDxy

8t2ðDxxDyy � D2
xyÞ þ 2e4src þ 4e2srctðDxx þ DyyÞ

; ð25Þ

xt ¼ x� uxt and yt ¼ y � vyt; ð26Þ

dM is the mass of injected pollutant, m is the thickness of the aquifer, ne is the effective porosity and esrc is

the width of the Gaussian initial concentration. This analytical solution has been extensively used to check
the accuracy of the diffusion velocity method. As in Zimmermann et al. work, the validation study consists

in four tests. For each test, only one parameter has been varied: the smoothing parameter e, the time step dt,
the re-griding frequency Nf and the dispersion ratio a. For each case, the numerical parameters used are

given in Table 1. The computer code was a very crude version of the OðN 2
p Þ summation method which has

been parallelised for a 32 Beowulf CPU cluster. Therefore, the CPU time of the simulations is by no way
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comparable to the results obtained by Zimmermann et al. with a fully optimized method. The use of a fast

multipole solver [1,11] is obviously highly desirable although it remains to be implemented.

3.2. Smoothing parameter e

In order to check the influence of the smoothing parameter e on the numerical results, three cases de-

noted 1, 2 and 5 have been considered (see Table 1). These three cases differ by the flow direction b.
Different forms for the dispersion tensor D can be obtained according to this flow direction and corre-

sponding to the different cases (see Table 2). This allows to study the influence of anisotropy on the nu-

merical results as well. Simulations have been performed up to 200 days with a time step dt ¼ 2 days. For all

cases, an overlap ratio h=e ¼ 0:9 and a re-griding frequency Nf ¼ 10 were selected. To estimate the influence

of e, the Er1 error has been calculated:

Er1 ¼
PM

i¼1 jcaðxiÞ � chðxiÞj2

M
; ð27Þ

where M is the number of particles with chðxiÞP 10�6 mg=l. On Fig. 1, the logarithm of the Er1 error has

been plotted as a function of the inverse of the smoothing parameter e for the three cases. The numerical

results obtained by Zimmermann et al. have been also plotted. We can then observe that the diffusion

velocity method and the PSE method have the same behavior. The errors for all cases can be consistently

reduced by decreasing the core radius of the particles. However a lower slope has been obtained with the
diffusion velocity method indicating that the convergence is a little bit better for the PSE method. The two

methods are basically different since the relative locations of the particle are preserved in a uniform flow in

Zimmermann et al. method whereas it is affected by the diffusion velocity in the present case. As it has been

observed by Zimmermann et al. for the PSE method, the anisotropy does not have any significant influence

on these results. This can be related for a part to the self-adaptivity of the method and for another part to

the sphericity of the smoothing function fe Eq. (3).

Table 1

Parameters used for the validation study (m, ne, esrc and h=e are fixed for all cases)

Case ux (m/d) uy (m/d) aL (m) aT (m) b
(degrees)

dm (g) Nt dt (days) Nf e (m)

1 1.0 0.0 10.0 1.0 0.0 125,000 4–100 2–50 10 7–14

2
ffiffi
2

p

2
�
ffiffi
2

p

2
10.0 1.0 )45.0 125,000 100–250 2 10 7–14

3 1.0 0.0 100.0 10.0 0.0 125,000 20–400 0.5–10 10 11

4
ffiffi
2

p

2
�
ffiffi
2

p

2
100.0 10.0 )45.0 125,000 20–400 0.5–10 10 11

5 0.6 )0.8 10.0 1.0 )53.0 125,000 100 2 10 7–14

6
ffiffi
2

p

2
�
ffiffi
2

p

2
0.0 0.0 )45.0 1,000,000 30 10 1 11

7
ffiffi
2

p

2
�
ffiffi
2

p

2
100.0 1.0 )45.0 1,000,000 100–10,000 2 1–10 11

m (m) ne esrc (m) h=e
7.0 0.37 44.0 0.9

Table 2

Forms of the dispersion tensor D

Case 1–3 2–4–6–7 5

D a 0
0 b

� �
a b
b a

� �
a b
b c

� �
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3.3. Time step dt

Following Zimmermann et al. paths, the influence of the time step dt has been investigated. Unlike

Zimmermann et al. work, only a second order smoothing function has been used in this work (Eq. (8)). In

this section, the three cases denoted 1, 3 and 4 have been considered. The numerical parameters for each

case are given in Table 1. The numerical simulations have been performed on 200 days and the smoothing

parameter e has been set to 11m. The overlap ratio h=e and the re-griding frequency Nf are respectively
equal to 0.9 and 10. Cases 1 and 3 differ only through the values attributed to the longitudinal and

transversal dispersivities which are ten times higher for the last case. Case 4 is similar to case 3 for the

dispersion characteristics, the flow direction having been set to b ¼ 45�. For each case, the logarithm of the

error Er1 with respect to the time step dt has been reported and compared to Zimmermann et al. results.

Fig. 2 shows that the diffusion velocity method and the PSE method have not the same behaviour for all

cases. In case 1, for time steps dt ranging from 5 to 50 days, the Er1 error with the PSE method remains

constant for time steps up to 25 days where it starts to grow slowly. The Er1 error varies between 5
 10�5

and 10�3. For the diffusion velocity method, the Er1 error grows constantly up to 35 days where it seems to
reach a plateau. The Er1 error is then about 2
 10�2. For cases 3 and 4, the Er1 error is constant with the

diffusion velocity method for time steps up to 3 days where it starts to grow slowly, reaching respectively

Fig. 1. Logarithm of the Er1 error with respect to the inverse of the smoothing parameter e: diffusion velocity method (case 1, DVR1;

case 2, DVR2; case 5, DVR5) and particle strength exchange method (case 1, PSE1; case 2, PSE2; case 5, PSE5).

Fig. 2. Logarithm of the Er1 error with respect to the time step dt: diffusion velocity method (a, case 1: DVR1; b, case 3: DVR3 and

case 4: DVR4) and particle strength exchange method (a, case 1: PSE1; b, case 3: PSE3 and case 4: PSE4).
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1:43
 10�2 and 1:02
 10�2 for a 10 days time step. For the same cases 3 and 4, Zimmermann et al. have

shown that the PSE method was stable for time steps up to 2.6 days which correspond to the following

stability condition:

dt6 c
h2

Dxx þ Dyy
: ð28Þ

This stability condition is not necessary for the diffusion velocity method which was found to be stable for

all the tested time steps. It was also observed that the anisotropic dispersion does not have any more effects

on the quality of the results. It is important to notice that the regularity of the numerical error as a function

of the time step in this particular case does not mean that the method does not suffer any instabilities at all.
Such a statement would required to be supported by a rigorous stability analysis which is not available

actually. Moreover, it has been observed [8] that an increasing time step will probably results in oscillations,

particularly in region with strong gradients or discontinuities. This problem which is partially corrected by

the use of a re-gridding procedure hereafter would necessitates more investigations. It is probable that the

mathematical analysis of the method would be of great help in this scope.

3.4. Re-griding procedure

In this section, the re-griding procedure has been studied. The analysis of the re-griding influence has

been split into three parts. In the first part, the improvement associated to the anti-diffusion step of the re-

griding process on the error of the projection step has been checked. In the second part, the behaviour of

the re-griding procedure applied to case 2 has been investigated. In the third part, the present re-griding
procedure has been compared to the remeshing procedure used in Zimmermann et al. work. For this third

part, the case 6 without dispersion has been considered as in Zimmermann et al. work (see Table 1).

First, the re-griding procedure has been tested by performing the same computations with only the

projection step and with the full procedure including the anti-diffusion step. The number of re-gridings Nr

has been set to different values uniformly distributed within the range ½0; 35	. The L2 error Er2 has been

evaluated on a grid as:

Er2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i;jðcaðxnði; jÞÞ � chðxnði; jÞÞÞ2P

i;jðcaðxnði; jÞÞÞ2

vuut ; ð29Þ

where caðxnði; jÞÞ is the exact analytical concentration at the fixed grid nodes denoted xnði; jÞ and chðxnði; jÞÞ
is the numerical concentration at these same points. As regard to the particle distribution, the initial

condition of case 1 has been used. On Fig. 3, the logarithm of the Er2 error with respect to the number of re-

gridings Nr has been reported with and without the anti-diffusion step (Eq. (19)). When the re-griding

procedure has been used without any anti-diffusion step, the Er2 error increases constantly with Nr. The

effect of the anti-diffusion step is to reduce the order of magnitude of the Er2 error which is by far lower.
The study of the influence of the re-griding procedure on the numerical results of case 2 is illustrated by 4

different plots:

• The breakthrough curve of the numerical (with and without re-griding procedure) and analytical solu-

tions at point xð25;�25Þ (Fig. 4(a)).

• The maximum concentration curve for both numerical (with and without re-griding procedure) and an-

alytical solutions (Fig. 4(b)).

• The logarithm of the Er2 error with respect to time t (with and without re-griding procedure) (Fig. 5(a)).

• The logarithm of the relative error Er3 with respect to time t (with and without re-griding procedure)
(Fig. 5(b)).
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Simulations have been performed up to 500 days with a time step dt ¼ 2 days. The other parameters used

are given in Table 1. Note that an overlap ratio h=e ¼ 0:9 and a smoothing parameter e ¼ 10:0m were

selected for the simulations.

As in Zimmermann et al. paper, the relative error Er3 was defined by:

Er3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðcmax

a � cmax
h Þ2

ðcmax
a Þ2

s
; ð30Þ

where cmax
h and cmax

a are respectively the maximum of the numerical and analytical concentrations. On the

breakthrough curve and themaximumconcentration curve (see Fig. 4), wiggles are observed for the numerical

results without re-griding procedure. This is the result of the difficulty encountered to ensure the overlapping

condition with the diffusion velocity method. The re-griding procedure allows to overcome this problem.

Looking at theEr2 error and theEr3 error (see Fig. 5) gives a better enlightenment of the effect of the re-griding

since they are reduced and almost constant for larger time. At time t ¼ 500 days, the Er2 error is about 0.01

with the re-griding process and 0.10 without it. For the Er3 error, at the same time, we have Er3 � 0:015 with
the re-griding and Er3 � 0:13 without it. Numerical tests have shown that a good compromise for the re-

Fig. 3. Concentration curve after 35 re-griding steps (a) (analytical solution: AS, solution with the anti-diffusion step: AD and solution

without the anti-diffusion step: NAD) and logarithm of the Er2 error with respect to the number of re-gridings Nr (b) (solution with the

anti-diffusion step: AD and solution without the anti-diffusion step: NAD).

Fig. 4. Breakthrough curve at point xð25;�25Þ (a) and maximum concentration curve (b) for case 2: diffusion velocity method without

the re-griding procedure (DVNR2), diffusion velocity method with the re-griding procedure (DVR2) and analytical solution (AS2).
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griding frequency is Nf ¼ 10 for this case. However, an increasing of the re-griding frequency Nf will yield a

improve accuracy. This pointwill be detailed in the next section. Eventually, some comparisonweremadewith

the re-griding procedure used by Zimmerman et al. This one is based on a in single step with a fourth order
projection function [6] applied at every time step, thus Nf ¼ 1. The Er3 error as a function of time has been

plotted on Fig. 6 for bothmethods. The simulations have been performed up 300 days with a time step dt ¼ 10

days. The others parameters used are those of case 6. The errors have the same order of magnitude for both

methods although slightly better results have been obtained using the Cottet–Koumoutsakos procedure.

3.5. Large dispersion ratio

In this section, the contaminant migration with an important ratio of the longitudinal and transversal

dispersivities a has been simulated. The aim of these calculations was to explore wether the velocity dif-

fusion method can be efficiently used for anisotropic problems and what its limits can be. The dispersion

ratio a is defined by:

a ¼ al

at
: ð31Þ

Fig. 5. Logarithm of the Er2 error with respect to time t (a) and logarithm of the Er3 error with respect to time t (b) for case 2: diffusion

velocity method without the re-griding procedure (DVNR2) and with the re-griding procedure (DVR2).

Fig. 6. Er3 error with respect to time t for case 6: diffusion velocity method without the re-griding procedure (DVNR6) and with the re-

griding procedure (DVR6), particle strength exchange method without the re-griding procedure (PSENR6) and with the re-griding

procedure (PSER6).
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For the numerical simulations with high dispersion ratios (a ¼ 100), we have used the case 8 of the Zim-

mermann et al. paper, noted 7 hereafter. The values of parameters for this case are given in Table 1.

Numerical simulations up to 1000 days have been performed with a time step dt ¼ 2 days. The overlap ratio

h=e and the smoothing parameter e are respectively fixed to 0.9 and 11.0m. Different re-griding frequency

Nf from 1 to 10 have been tested.

On Fig. 7, the plume of contaminant for both analytical and numerical solutions with the full re-griding

procedure has been plotted at times t ¼ 200 days, t ¼ 500 days and t ¼ 1000 days. No oscillations where

observed in the surrounding of the plume which seems to indicate that the residual diffusion error which
remains after the anti-diffusive step has a positive action, at least in this case. In Fig. 8, we present the

Fig. 7. Comparaison between the analytical solution (bottom) and the numerical solution with the re-griding procedure (top) for case 7

at 200 days, 500 days and 1000 days. The contour lines represent the following concentrations c ¼ 0:01, 0.1, 0.5, 1.0, 2.0, 4.0, 6.0,

8.0mg/l.
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breakthrough curve at point xð20;�20Þ and the maximum concentration curve. Two different re-griding

frequency, Nf ¼ 2 and Nf ¼ 10, were used. A better accuracy was achieved with the higher frequency which

is consistent with the observations of the previous section.

This is confirmed on Fig. 9 where the Er3 error with different re-griding frequency has been compared to

Zimmermann et al. results. The Er3 error is always lower than 0.012, ranging from 0.012 for Nf ¼ 10 to
0.007 for Nf ¼ 1. It is a decreasing function of Nf ¼ 10 which is not really a surprise. Note that Zimmer-

mann et al. obtained a Er3 error of 0.07 with a second order cutoff function and a very comparable 0.006

with a fourth order cutoff function at time t ¼ 1000 days.

It was also observed that the error grows more rapidly during the first 50 days, probably to the im-

portant relative increasing of the inter-particle distance during this early stage. This problem can be partly

cured by using an adaptive re-griding frequency during the early development of the solution in order to

satisfy the h=e < 1 condition after what a constant Nf is to be used. Thanks to the application of the re-

griding procedure, the particle number Np increases during the computation. It has been plotted with re-
spect to time t on Fig. 10. At the end of the simulations, the number of particles Np ranges from 21,000 for

Nf ¼ 10 to Np � 45,000 for the other re-griding frequencies. These number are slightly larger than the

17,000–30,000 particles used by Zimmerman et al. although it is of the same order of magnitude.

Fig. 9. Er3 error with respect to time t for 200 days (a) and for 1000 days (b) for case 7: diffusion velocity method with re-griding

frequencies Nf ¼ 1 (DVR7Nf1), Nf ¼ 2 (DVR7Nf2), Nf ¼ 5 (DVR7Nf5) and Nf ¼ 10 (DVR7Nf10), particle strength exchange method

with a second order cutoff function (PSE7CF2) and with a fourth order function (PSE7CF4).

Fig. 8. Breakthrough curve at point xð20;�20Þ (a) and maximum concentration curve (b) for case 7: diffusion velocity method with the

re-griding frequency Nf ¼ 2 (DVR7Nf2) and analytical solution (AS7).
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The last test presented in this paper concerns the ability of the method to compute an accurate solution

on very long time which is the case of many practical situations. A number of 10,000 time steps was selected

with the same 2 days value thus leading to a total duration of the diffusion process of 55 years. The re-

griding frequency was Nf ¼ 5 and the total number of particles was bounded. Three different cases were
performed with Np < 5000, 10,000, 20,000. The satisfaction of the overlapping condition with a fixed

number of particles requires an adaptive smoothing parameter. The value of this parameter is computed

during the re-griding process from the grid concentration. The logarithm of the Er2 error with respect to

time t has been plotted on Fig. 11. The error at the end of the simulation is roughly proportional to the

particles number inverse ranging from 0.042 for 5000 particles to 0.012 for 20,000 particles.

4. Conclusion

The diffusion velocity method was successfully applied to the set of test problems used in Zimmermann

et al. work. It was readily found that the extension of the method to anisotropic non-uniform dispersion is

by far easier to derive than that of the PSE method. Beside this the PSE results indicate that this method has

Fig. 11. Logarithm of the Er2 error with respect to time t for case 7 with limit particles numbers Np ¼ 20,000, 10,000 and 5000.

Fig. 10. Particles number Np used in case 7 with respect to time t with the diffusion velocity method and re-griding frequencies Nf ¼ 1,

2, 5 and 10.
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better accuracy properties. This is somewhat counterbalanced by the better stability of the present method

which does not require the fulfillment of any stability condition, at least within the range of the time step

values tested in this work. The method has also been found very sensitive to the fulfillment of the over-

lapping condition due to the purely advective nature of the equations solved. Therefore, the use of a re-

griding procedure drastically improve the accuracy. Last, an additional advantage is the ability of the

method to automatically satisfy unbounded external conditions [12]. Eventually, the two methods have

been found to be able to provide good results for dispersion problems. The choice between the two methods

if necessary would rely on the balance between accuracy for the PSE method versus robustness and sim-
plicity for the diffusion velocity method, and may be the personal taste of the user.
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